Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
China Journal of Chinese Materia Medica ; (24): 3612-3622, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981492

RESUMO

This study aimed to analyze the effect of Bletilla striata polysaccharide(BSP) on endogenous metabolites in serum of tumor-bearing mice treated with 5-fluorouracil(5-FU) by untargeted metabolomics techniques and explore the mechanism of BSP in alleviating the toxic and side effects induced by 5-FU. Male BALB/C mice were randomly divided into a normal group, a model group, a 5-FU group, and a 5-FU + BSP group, with eight mice in each group. Mouse colon cancer cells(CT26) were transplanted into the mice except for those in the normal group to construct the tumor-bearing mouse model by subcutaneous injection, and 5-FU chemotherapy and BSP treatment were carried out from the second day of modeling. The changes in body weight, diarrhea, and white blood cell count in the peripheral blood were recorded. The mice were sacrificed and sampled when the tumor weight of mice in the model group reached approximately 1 g. TUNEL staining was used to detect the cell apoptosis in the small intestine of each group. The proportions of hematopoietic stem cells and myeloid progenitor cells in bone marrow were measured by flow cytometry. Five serum samples were selected randomly from each group for untargeted metabolomics analysis. The results showed that BSP was not effective in inhibiting colon cancer in mice, but diarrhea, leukopenia, and weight loss caused by 5-FU chemotherapy were significantly improved after BSP intervention. In addition, apoptotic cells decreased in the small intestinal tissues and the percentages of hematopoietic stem cells and myeloid progenitor cells in bone marrow were significantly higher after BSP treatment. Metabolomics results showed that the toxic and side effects of 5-FU resulted in significant decrease in 29 metabolites and significant increase in 22 metabolites in mouse serum. Among them, 19 disordered metabolites showed a return to normal levels in the 5-FU+BSP group. The results of pathway enrichment indicated that metabolic pathways mainly involved pyrimidine metabolism, arachidonic acid metabolism, and steroid hormone biosynthesis. Therefore, BSP may ameliorate the toxic and side effects of 5-FU in the intestinal tract and bone marrow presumably by regulating nucleotide synthesis, inflammatory damage, and hormone production.


Assuntos
Animais , Masculino , Camundongos , Neoplasias do Colo/tratamento farmacológico , Diarreia , Fluoruracila/efeitos adversos , Hormônios , Metabolômica , Camundongos Endogâmicos BALB C , Polissacarídeos/farmacologia
2.
China Journal of Chinese Materia Medica ; (24): 2325-2333, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981308

RESUMO

The study aimed to investigate the effect of anemoside B4(B4) on fatty acid metabolism in mice with colitis-associated cancer(CAC). The CAC model was established by azoxymethane(AOM)/dextran sodium sulfate(DSS) in mice. Mice were randomly divided into a normal group, a model group, and low-, medium-, and high-dose anemoside B4 groups. After the experiment, the length of the mouse colon and the size of the tumor were measured, and the pathological alterations in the mouse colon were observed using hematoxylin-eosin(HE) staining. The slices of the colon tumor were obtained for spatial metabolome analysis to analyze the distribution of fatty acid metabolism-related substances in the tumor. The mRNA levels of SREBP-1, FAS, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 were determined by real-time quantitative PCR(RT-qPCR). The results revealed that the model group showed decreased body weight(P<0.05) and colon length(P<0.001), increased number of tumors, and increased pathological score(P<0.01). Spatial metabolome analysis revealed that the content of fatty acids and their derivatives, carnitine, and phospholipid in the colon tumor was increased. RT-qPCR results indicated that fatty acid de novo synthesis and β-oxidation-related genes, such as SREBP-1, FASN, ACCα, SCD-1, ACOX, UCP-2, and CPT-1 mRNA expression levels increased considerably(P<0.05, P<0.001). After anemoside B4 administration, the colon length increased(P<0.01), and the number of tumors decreased in the high-dose anemoside B4 group(P<0.05). Additionally, spatial metabolome analysis showed that anemoside B4 could decrease the content of fatty acids and their derivatives, carnitine, and phospholipids in colon tumors. Meanwhile, anemoside B4 could also down-regulate the expression of FASN, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 in the colon(P<0.05, P<0.01, P<0.001). The findings of this study show that anemoside B4 may inhibit CAC via regulating fatty acid metabolism reprogramming.


Assuntos
Camundongos , Animais , Proteína de Ligação a Elemento Regulador de Esterol 1 , Neoplasias Associadas a Colite , PPAR alfa/genética , Neoplasias do Colo/genética , Colo , Azoximetano , RNA Mensageiro , Sulfato de Dextrana , Colite/tratamento farmacológico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
China Journal of Chinese Materia Medica ; (24): 3660-3671, 2021.
Artigo em Chinês | WPRIM | ID: wpr-888019

RESUMO

To study the effect of anemoside B4 on rats with chronic obstructive pulmonary disease (COPD).Seventy-two SD male rats were randomly divided into blank group and model group.The method of exposure to cigarette smoke and combined with lipopolysaccharide (LPS) was used to replicate the rat model of COPD.After the model was maintained for 5 weeks,the rats were randomly divided into model group,dexamethasone group (0.81 mg·kg~(-1)) and anemoside B4 low,medium and high (2,4,8 mg·kg~(-1)) dose groups,a group of 12 animals were administered,and then the administration was started.The administration was maintained until the28th day,and the pulmonary function parameters of rats were measured by an animal pulmonary function instrument.After testing the rat lung function parameters,immediately draw rat alveolar lavage fluid (BALF),and use high-throughput protein chip technology to determined the expression levels of inflammatory cytokines in rat BALF.HE staining was used to observe the general pathological changes of rat lung and tracheal tissue.Masson staining was used to observe the collagen deposition in rat lung tissue.Real-time q PCR method was used to determine the mRNA expression level of related genes in rat lung tissue.Western blot method was used to determine the expression levels of related proteins in rat lung tissues.According to the findings,compared with the model group,the dexamethasone group and the anemoside B4 drug groups had different degrees of increase in the lung function parameters of rats (P<0.01,P<0.05),improved the expression level of inflammatory cytokines in the BALF of rats to varying degrees (P<0.01,P<0.05),and improved the pathological structure of rat lung tissue to varying degrees.Relative mRNA expressions of matrix metalloproteinase 2 (MMP-2),matrix metalloproteinase 12 (MMP-12),matrix metalloproteinase inhibitor 1 (TIMP-1),interleukin-6 (IL-6),and transforming growth factor-β1 (TGF-β1) were significantly reduced (P<0.01);whereas relative mRNA expressions of matrix metalloproteinase 9(MMP-9) and matrix metalloproteinase inhibitor 2 (TIMP-2) were increased significantly (P<0.01).The mRNA and protein expression levels of T-box transcription factor (T-bet),interleukin-12 (IL-12) and signal transducer and activator of transcription 4(STAT4) reduced to varying degrees (P<0.01,P<0.05).The mRNA of transcription factor GATA3 (binding protein-3),interleukin-4 (IL-4) and signal transducer and activator of transcription 6 (STAT6) in rat lung tissues and the protein expression levels of IL-4 and STAT6 were increased to varying degrees (P<0.01,P<0.05).In conclusion,anemoside B4 has a certain protective effect on COPD rats caused by cigarette smoke exposure and combined with LPS.The mechanism of action may be related to the regulation of IL-12/STAT4 and IL-4/STAT6 signaling pathways.


Assuntos
Animais , Masculino , Ratos , Interleucina-12 , Interleucina-4 , Pulmão/metabolismo , Metaloproteinase 2 da Matriz , Doença Pulmonar Obstrutiva Crônica/genética , Fator de Transcrição STAT4/metabolismo , Fator de Transcrição STAT6/metabolismo , Saponinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA